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1. What to expect

This is a paper for patient readers. The reader has to digest several pages
before being enlightened on the direction taken by this paper. Following a
short section with historical notes, Section 3 describes the problem this paper
concentrates upon, approximating multivariate integrals, and presents my
favourite quality criteria. Section 4 sketches several ways to construct such
approximations, one of which is this paper’s real subject. After introducing
concrete integrals and a tool to deal with symmetries in Section 5, we are
ready for the real work.

In Section 6, interpolatory cubature formulae are characterized and the
connection with orthogonal polynomials and ideal theory is in the spotlight.
Sections 7 and 8 are devoted to the determination of lower bounds and the
characterization of minimal cubature formulae. Finally, Sections 9 and 10
concentrate on the art of constructing cubature formulae.

Readers familiar with the construction of quadrature formulae may find
it helpful to spell out the meaning in one dimension of the definitions and
theorems given for arbitrary dimensions.

2. On the origin of cubature formulae
2.1. The prehistory

According to the Oxford English Dictionary, cubature is the determination
of the cubic contents of a solid, that is, the computation of a volume. We
are interested in the construction of cubature formulae, that is, formulae
to estimate volumes. The problem of measuring areas and volumes has
always been present in everyday life. The ancient Babylonians and Egyp-
tians already had precise and correct rules for finding the areas of triangles,
trapezoids and circles (for the Babylonians 7 equalled 3, for the Egyptians
235/81) and the volumes of parallelepipeds, pyramids and cylinders. They
thought of these figures in concrete terms, mainly as storage containers for
grain. They discovered these rules empirically.

The first abstract proofs of rules for finding some areas and volumes are
said to have been developed by Eudoxus of Cnidus in about 367 BC. About
a century later, his method was further developed by Archimedes. In the
middle of the 16th century Archimedes’ work became available in Greek and
Latin and in the 17th century his method became known as the method of
exhaustion. It culminated in the 19th century in the isolation of the concept
of Riemann integration, defined by approximating Riemann sums.

In southern Germany, due to increased commerce, measuring the contents
of wine barrels became important in the 15th century, and therefore approx-
imations were introduced. In 1613, Johannes Kepler witnessed a salesman
using one gauging-rod to measure the contents of all Austrian wine barrels
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without further calculations. This was the motivation for what became his
book Nova Stereometria Doliorum Vinariorum® (Kepler 1615). It turned
out that for the type of barrels used in Austria, the approximation used by
the salesman was quite good. At the end of the book Kepler wrote that
his book was longer than he had expected and people could just as well
continue to use the approximation. In his final sentence he philosophizes on
the eternal compromise between approximations and exact calculations:

Et cum pocula mille mensi erimus,
Conturbabimus illa, ne sciamus.?

The start of the modern study of volume computation is usually linked with
Kepler.

The word ‘cubature’ appeared in the written English language around
the same time. The oldest known reference, according to the Oxford English
Dictionary, is a letter from Collins in 1679 containing the sentence: ‘In order
to the quadrature of these figures and the cubature of their solids.” From
1877 we cite Williamson: ‘The cube ...is ...the measure of all solids, as the
square is the measure of all areas. Hence the finding the volume of a solid
is called its cubature.’

The formulation of the problem of measuring in terms of integrals and
functions is much more recent. The first cubature formula in the form we
are now familiar with was constructed by Maxwell (1877). And that is when
our story starts. For us, a cubature formula is a weighted sum of function
evaluations used to approximate a multivariate integral. (The function is not
necessarily the integrand, nor is the same function used for each evaluation.)
The prehistory of our field of interest thus ends in 1877. In the following
section we briefly sketch different approaches and specify the approach we
follow in the rest of this paper.

2.2. In search of a pedigree

There are several criteria to specify and classify cubature formulae based on
their behaviour for specific classes of functions. A classical way to present
a survey is to sketch the pedigree of different approaches.

The oldest criterion is the algebraic degree of a cubature formula, used by
James Clerk Maxwell in 18773. This criterion is obviously inherited from
the work on quadrature formulae. We have no idea what a cubature formula
of algebraic degree d will give us when applied to a function that is not a
polynomial of degree smaller than or equal to d.

! Solid Geometry of Wine Barrels

2 After measuring a thousand cups, we will be so confused that we lose our head.

3 When we write that something happened in a particular year, we in fact refer to the
year the results were published.



4 R. CooLs

The second oldest approach to approximate multivariate integrals does
not have this problem. One evaluates the integrand function in a number
of randomly selected points and uses the average function value. This is
the classical Monte Carlo method. The idea came to Stanislaw Ulam, Nick
Metropolis and John von Neumann while working on the Manhattan Project
in 1945. From the Strong Law of Large Numbers it follows that the expected
value this method delivers is the integral. If one restricts the integrands to
the class of square integrable functions, the Central Limit Theorem gives
rise to a probabilistic error bound known as the ‘N/2 law’: for a fixed level
of confidence, the error bound varies inversely as N/2.

Because truly random samples are not available and the error estimate of
the Monte Carlo method is only probabilistic, researchers in the early 1950s
became interested in quasi-Monte Carlo methods. The method received
its name from R. D. Richtmyer (1952). In these methods one uses, as in
the classical Monte Carlo method, an equal-weights cubature formula but
chooses the points to be ‘better than random’. One obtains rigorous error
bounds that behave better than the N/2 law. The first quasi-Monte Carlo
methods were based on low discrepancy sequences. Another type of quasi-
Monte Carlo method is the method of good lattice points introduced by
Nikolai M. Korobov (1959). The more general notion of a lattice rule was
introduced by Konstantin K. Frolov (1977) and rediscovered by Ian H. Sloan
and Philip Kachoyan (1987).

It should be noted that Frolov did not see his rules as quasi-Monte Carlo
methods. He constructed cubature formulae that are exact for a set of trigo-
nometric polynomials, that is, his criterion is the trigonometric degree. It is
strange that his paper is not cited in the Russian literature on cubature for-
mulae of trigonometric degree. We will see that there are many similarities
between the construction of cubature formulae of algebraic degree and the
construction of formulae of trigonometric degree. In addition, Frolov made
the link with lattice rules. Hence the pedigree approach breaks down here
and we will use another thread for this story.

We will focus on cubature formulae that are exact for a certain class of
functions: polynomials, both algebraic and trigonometric. Cubature formu-
lae of algebraic degree and lattice rules fit in this single framework.

Cubature formulae of algebraic degree play an important role for low di-
mensions and are essential building blocks for adaptive routines to compute
integrals. Practical experience with lattice rules is still limited. Most people
expect them to be important for high dimensions. However, there already
exist two-dimensional applications that benefit from their properties.
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3. Problem setting and criteria

An integral [ is a linear continuous functional

1)i= [ wix)f(x) dx (3.1)
where the region 2 C R™. We use x as a shorthand for the variables
z1,T9,...,Ty. We will always assume that w(x) > 0, for all x € , that is,

I is a positive functional.
It is often desirable to approximate I by a weighted sum of (easier) func-
tionals such that

I[f] ~ Q[f] = Zw]L [f] (3.2)

where w; € R. We will only consider approximations that are exact for
a given vector space of functions and we start with a very general result
on the existence of such approximations, due to Sobolev (1962); see also
Mysovskikh (1981).

We will need the following lemma.

Lemma 3.1 The system of linear equations
Ax=b with AcC*, beCHt, xcC”

has a solution if and only if Z] 1 b;¥; = 0 for all solutions y of A*y =0
(A* = AT § is the complex conjugate of ¥).

Proof. Let L be the vector space generated by the columns a®, ... a®
of A, and L+ C C" the orthogonal complement of L. Thus y € Lt if and
only if y is orthogonal to all columns of A. Hence L' is the subspace of all
solutions of A*y = 0.

Ax = b has a solution if and only if b € L. But b € L if and only if b is
orthogonal to y and A*y =0. O

Let F be a vector space of functions defined on Q@ C R™ and Fy C F
a subspace. Let I be a linear, continuous functional defined on F', that
is approximated by a linear combination of other functionals (3.2) with
constant coefficients. Let

Foz{fEFlZLj[f]:O,jzl,...,N}CFI.

Theorem 3.1 A necessary and sufficient condition for the existence of an
approximation (3.2) that is exact for all f € Fj is

feF,=If] =0. (3.3)

Proof. Tt is trivial that the condition is necessary. It remains to be proven
that it is sufficient.
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Let fi, ¢ = 1,...,u be a basis of Fj. Then the approximation (3.2) is
exact for all f € F if and only if it is exact for f;, i =1,..., u:

Zw] 1fi] = I[fi]. (3.4)

(3.4) is a system of linear equations for the weights w;, j =1,...,N.
Let (a1, ...a,)T be the solution of the adjoint homogeneous system:

f:ajLi[fj] =0, i=1,...,N. (3.5)
=1

The lemma implies that (3.4) has a solution if and only if 3°%_; a;I[f;] =0
which is equivalent to

7
I [Z a; f]] = 0. (3.6)
j=1

But (3.5) is equivalent to

7]
L; [Zajfj] =0, i=1,...,N,
=1

which means that f = 3°%_, a;f; € Fy. Hence the necessary and sufficient
condition (3.6) for the solvablhty of (3.4) can be written as I[f] = 0. From
the solvability of (3.4) follows the sufficientness of (3.3). O

We will only consider functionals L; that are point evaluations. Most

often L;[f] = f(yO) for a y¥) € R™ but occasionally one encounters ap-
proximations that use partial derivatives of f, that is,

6_71+ +]nf (])
oaT md{,(y ).

Unless stated otherwise, we shall concentrate on approximations that use
function values only. If n = 1, then @ is called a quadrature formula. If
n > 2, then @ is called a cubature formula. If partial derivatives are used,
@ is called a generalized cubature formula. So, for our purposes, a cubature
formula @ has the form

Li[f] =

N
I1f]~ QIf] =3 _w; f(y?). (3.7)

j=1
The choice of the points y) and weights wj; is independent of the function

f. They are chosen so that the formula gives a good approximation for some
class of functions.
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According to Rabinowitz and Richter (1969), a good quadrature or cub-
ature formula has all points y) inside the region © and all weights wj
positive. Positive weights imply that @ is also a positive functional. As
Maxwell (1877) noted when he obtained a cubature formula for the cube
with 27 points, some outside the cube, it might be difficult to apply a cub-
ature formula when points are outside the region 2

This, of course, renders the method useless in determining the integral from the
measured values of the quantity u, as when we wish to determine the weight of
a brick from the specific gravities of samples taken from 27 selected places in the
brick, for we are directed by the method to take some of the samples from places
outside the brick.

In the remainder of the paper, we will only consider cubature formulae
that are exact for algebraic or trigonometric polynomials.

Let a = (a1,a2,...,0n) € Z" and |o] = X7, |aj|. An (algebraiq)
monomial in the variables xq, x5, ..., T, is a function of the form H;”Zl 33?1,

also denoted by x%, for a € N". A trigonometric monomial is a function of
the form

n
H e?™ %% where %= -1,
=1

also denoted by €271, An algebraic, respectively trigonometric, polynomial
in n variables is a finite linear combination of monomials, that is,
o0 o0
p(x) = Z anx%, respectively t(x) = Z age’™ o,
ay,...,an=0 A ,yeey Qi =—00

For trigonometric polynomials, some authors add the restriction that a,
and a_, are complex conjugates. One can of course also use sine and cosine
functions to describe real trigonometric polynomials. This restriction is
unnecessary here.

The degree of a multivariate algebraic or trigonometric polynomial v is
defined as

deg(o) = { el a0 # 0} i 20,

The vector space of all algebraic polynomials in n variables of degree at
most d is denoted by P7. The vector space of all trigonometric polynomials
in n variables of degree at most d is denoted by 77. The dimensions of these
vector spaces are:

d

s = $(2) (9

1=0

dimP? = (”+d) and
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We can now formulate the criterion we will most often use.

Definition 3.1 A cubature formula @ for an integral I has algebraic, re-
spectively trigonometric, degree d if it is exact for all polynomials of algeb-
raic, respectively trigonometric, degree at most d and it is not exact for at
least one polynomial of degree d + 1.

Cubature formulae of algebraic degree are available for a large variety of
regions and weight functions. For a survey, we refer to Stroud (1971) and
Cools and Rabinowitz (1993). Cubature formulae of trigonometric degree
are only published for 2 = [0,1]" and w(x) = 1, and in this paper we will
only consider this region. For a survey, we refer to Cools and Sloan (1996).

The overall degree of a multivariate polynomial v is defined as

d—eg(v)z{ max{max{|a;|: j=1,...,n} 1 aq #0} ifv#0,

—o0 ifv=0.

The vector space of all algebraic polynomials in n variables of overall degree
at most d is denoted by 52. The vector space of all trigonometric poly-
nomials in n variables of overall degree at most d is denoted by 7. The
dimension of these vector spaces are:

dimP; = (d+1)" and dim7, = (2d+1)".
We can now define another criterion for cubature formulae.

Definition 3.2 A cubature formula () for an integral I has algebraic, re-
spectively trigonometric, overall degree d if it is exact for all algebraic, re-
spectively trigonometric polynomials of overall degree at most d, and it is
not exact for at least one polynomial of overall degree d + 1.

A notable example of cubature formulae with overall algebraic degree d
is the family of Gauss-product rules, obtained from quadrature formulae of
degree d.

Most known cubature formulae for integrals of periodic functions on the
unit cube [0,1)" are so-called lattice rules and for them a criterion used
much more often than the trigonometric degree is the Zaremba index. The
Zaremba index is related to the dominant terms in the error of the lattice
rule for a worst possible function in a particular class of functions.

Definition 3.3 A multiple integration lattice L in R™ is a subset of R™
which is discrete and closed under addition and subtraction and which con-
tains Z™ as a subset. A lattice rule is a cubature formula for approximating
integrals over [0,1)" where the N points are the points of a multiple integ-
ration lattice L that lie in [0,1)"™ and the weights are all equal to 1/N.
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Fig. 1. Monomials for which a two-dimensional cubature formula is exact

Definition 3.4 A cubature formula @ for an integral I has Zaremba index
d if it is exact for all trigonometric monomials €27 1°* with

{ 1 if =0,

Hr,—<d with 7, := | if s #£0
1 b

i=1
and it is not exact for at least one monomial with d = [, .

Why is the algebraic degree of a cubature formula a measure of its qual-
ity? The main argument is that a well-behaved function is expected to be
well approximated by a polynomial (for instance a Taylor series) and con-
sequently its integral is expected to be well approximated by a cubature
formula of a suffienciently high algebraic degree. Another argument, which
applies only to some regions, is that the rate of convergence of a compound
cubature formula as the mesh size shrinks is directly related to the algeb-
raic degree of the basic cubature formula. This follows from the asymptotic
error expansion for compound cubature formulae, which we will encounter
in Section 4.

Why is the trigonometric degree, as well as other criteria based on trigo-
nometric polynomials, a measure of the quality of a cubature formula? The
main argument is that a well-behaved function is expected to be well approx-
imated by a trigonometric polynomial (for instance its Fourier series) and
consequently its integral is expected to be well approximated by a cubature
formula of a sufficiently high trigonometric degree.

One uses other criteria, such as the overall algebraic or trigonometric
degree or the Zaremba index, if one has reasons to believe that the corres-
ponding set of monomials is more relevant. This is obviously connected to
one’s favourite way to study the error of a cubature formula when applied
to a function for which it does not give the exact value of the integral.

We will use the symbol V7 to refer to one of the vector spaces P75, Py, T%
or 73. The results we present in this paper are also valid for other vector
spaces, but one has to be cautious. A property that is needed to generalize
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several proofs is that the convex hull of the powers of « of the monomials
in V¢ contains only these monomials. In Figure 1 we illustrate this for the
trigonometric degree, overall trigonometric degree and Zaremba index. It is
obvious that the Zaremba index no longer has a role to play in this paper.
The role of this criterion is important in the context of quasi-Monte Carlo
methods. For readers who want to know more about this, we recommend
Niederreiter (1992) and Sloan and Joe (1994).

4. Different ways to construct cubature formulae

In Section 2.2 we mentioned that there is more than one way to obtain a
cubature formula. Much depends on the quality criterion used. As stated
earlier, in this paper we restrict our attention to cubature formulae that
are designed to be exact for a vector space of algebraic or trigonometric
polynomials. Even then there are several ways to reach this goal and in this
section we will briefly outline some of these. The examples in this section will
only be two-dimensional but the ideas behind them are perfectly general.

4.1. Repeated quadrature

No doubt the field of quadrature is more threaded and explored than its
multivariate counterpart. It is hence not surprising that even today many

people use the product of two quadrature formulae to integrate over a square.
Let

1 N :
/ g(z)dr ~ ijg(a:(”) (4.1)
0 et

be a quadrature formula of degree d., then

1,1 N N

/ / flz,y)dzdy ~ Z Zwiwjf(m(i),a:(j)). (4.2)
0 J0 i=1j=1

If the quadrature formula (4.1) has algebraic degree d, then the cubature
formula (4.2) has overall algebraic degree d.

One can use different quadrature formulae for each of the one-dimensional
integrals. Even the one-dimensional integrals may have different limits or
weight functions. If the quadrature formula in x has degree d, with N,
points and the formula in y has degree d, with NV, points, the resulting
cubature formula will be exact for a space of polynomial ‘between’ P} and
Pp with d := min{d;,d,} and D := max{d;,d,}, and has N = NN,
points.

4.2. Change of variables

If one encounters a new problem, it is tempting to transform it into a problem
for which a solution is familiar. For instance, an integral over a circle or
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triangle can be transformed into an integral over a square:

/Ol/ozf(at,y)dyd:c = /Olzv/olf(a:,xt)dtd:c,

1 V1—x2 1 p2rn
z,y)dydx = / / cosf,rsinf)dfdr.
[ T T i —

One can then use repeated quadrature, preferably using quadrature formulae
that take the Jacobian of the transformation into account. For the above
examples a possible choice is a combination of a Gauss-Legendre and an
appropriate Gauss—Jacobi quadrature formula. This results in a so-called
Conical Product rule for the triangle and a Spherical Product rule for the
circle (Stroud 1971).

Transformations can have surprising advantages and disadvantages. For
example, the above transformation of a triangle into a square, mentioned
by Stroud (1971), but now usually referred to as the Duffy transformation
(Duffy 1982), removes some types of singularity from the integrand (Lyness
1992, Lyness and Cools 1994), but the resulting cubature formula lacks
symmetry. In fact there are three distinct Conical Products rules for each
degree, depending on which vertex of the triangle is the preferred one.

4.83. Compound rules and copy rules

It can happen that the given integration region has an unusual shape for
which no cubature formula is available, but that it can be subdivided into
standard regions for which cubature formulae are available. The sum of
all cubature formulae on all subregions is a so-called compound rule. If a
cubature formula on a standard region does not give a result that is accurate
enough, because it is applied to a function for which it was not designed to
give the exact result, one can also subdivide and apply a properly scaled
version of the given cubature formula on each subregion. And so on until
one obtains the desired accuracy.

If the given region can be subdivided in congruent regions, a special kind
of compound rule, the copy rule, becomes interesting. If, for example, the
integration region is a square, one can divide this into m? identical squares,
each of side 1/mth the original side, and apply a properly scaled version of
the given cubature formula to each. This approach looks expensive, espe-
cially if the dimension goes up, but is appealing because an error expansion
is readily available.

So far, we have considered cubature formulae that are exact for a certain
vector space. Almost all users will apply them to functions for which they
do not give the exact result. So, we have arrived at a point where we need
to say something about the error, that is, Q[f] — I[f].
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For regular f(z,y) € CP, p € N, the almost self-evident extension of the
one-dimensional Euler-Maclaurin expansion may be expressed as

p—1
Qs 11f1 = Y, PLD 4 ogm), (43)
i=1
where Q™) is the m?-copy of @ and the coefficients B; depend on the cub-
ature formula @, the integral I and the integrand f.

Once it is known that an error expansion such as (4.3) exists, Richardson
extrapolation (Richardson 1927) can be used to speed up convergence (by
eliminating terms of the error expansion). In order to apply extrapolation
one need not know all details: the value of the B; need not be known.

The m-copy rules for cubes and simplices have received considerable at-
tention, because for some classes of non-regular functions, error expansions
are also available and Richardson extrapolation can be used to speed up
convergence. It is beyond the scope of this text to pursue this further. The
situation seems to be that for many algebraic or logarithmic singularities
that occur at a vertex or along a side, an appropriate expansion exists. For
a brief survey of what is available for a triangle we refer to Lyness and
Cools (1994). Readers who want to know more about this topic will find
it in Lyness and McHugh (1970), Lyness and Puri (1973), Lyness (1976),
de Doncker (1979), Lyness and Monegato (1980), Lyness and de Doncker-
Kapenga (1987), Lyness and de Doncker (1993), Verlinden and Haegemans
(1993).

4.4. Direct construction of cubature formulae

In the previous subsections we described indirect approaches to constructing
cubature formulae. These are not the main subject of the article. We are
especially interested in the direct approach.

Suppose one wants a cubature formula that is exact for all functions of a
vector space of functions. Because an integral and a cubature formula are
linear operators, it is sufficient and necessary that the cubature formula is
exact for all functions of a basis of the vector space. Hence, if one desires a
cubature formula that is exact for a vector space V§ and if the functions f;
form a basis for V7, then it is necessary and sufficient that

Qlfy=11f], i=1,...,dimVj. (4.4)

If the f; are monomials, then the right-hand sides of (4.4), the so-called
moments, are known in closed form or can be evaluated. When the left-
hand sides of (4.4) are replaced by the weighted sum of function values (3.7)
and the number of points NV is fixed, then one obtains a system of nonlinear
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equations in the unknown points y) and weights w;

N
Swifily?)=1I[f], i=1,...,dimV3. (4.5)

i=1

We are interested in cubature formulae with a ‘low’ number of points. In
Section 7.1 we will search for a lower bound for the number of points de-
pending on V7.

At this point we want to mention that one can distinguish between two
approaches to construct cubature formulae the direct way:

e one may proceed directly to solve the system of nonlinear equations, or
e one can search for polynomials that vanish at the points of the formula.

The foundation for successful application of the first approach is laid in Sec-
tion 5. The building blocks for the second approach are presented in Section
6. The second approach has been very successful in (one-dimensional) quad-
rature. Most published cubature formulae were, however, obtained using the
first approach.

5. On regions and symmetry

We will always try to be as general as possible but we will soon discover
that, for instance, lower bounds for the number of points depend on the
specific region © and weight function w(x). In this section we will define
some standard regions and describe their most important property, namely
symmetry.

5.1. Standard regions

In this paper we will encounter the following regions and weight functions
for the algebraic-degree case:

C,: the n-dimensional cube
Q:={(z1,...,2n): —1<2; <1,i=1,...,n}
with weight function w(x) := 1,
C$: the square
Q:={(z1,22): -1 <z; < 1,1 =1,2}
with weight function

w(zy,z2) = (1 — a:%)"‘(l — x%)a, a > —1,
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Sp: the n-dimensional ball

with weight function w(x) := 1,
U,: the n-dimensional sphere, that is, the surface of the ball

Q=< (z1,...,7 Z.’L‘
Jj=1

with weight function w(x) := 1,

T,: the n-dimensional simplex

n
Q::{xl,.., Z landmiZO,izl,...,n}

with weight function w(x) := 1,

: the entire n-dimensional space  := R"™ with weight function

n
w(x) = e ™ with 7%= Zw?,
j=1

E7: the entire n-dimensional space 2 := R™ with weight function
w(x) :=e"".

The trigonometric-degree case deals usually with the following region:

Cr:

»: the n-dimensional cube

Q:={(z1,...,20):0< 2z, < 1,i=1,...,n}
with weight function w(x) := 1.
We will use the above notation to refer to both the region and weight function
and to the integral over this region with this weight function.
5.2. Symmetry groups

The symmetry of an integral is described by its symmetry group. Let G
be any group of orthogonal transformations that have a fixed point at the
origin, and let |G| denote the order of the group.

Definition 5.1 A set {2 C R" is said to be invariant with respect to (w.r.t.)
a group G if Q is left unchanged by each transformation of the group, that
is, g(Q) = Q, for all g € G. A function f is said to be invariant w.r.t. G
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if it is left unchanged by each transformation of the group, that is, f(x) =
f(g(x)) for all g € G. An integral is invariant w.r.t. G if both its region and
weight function are invariant w.r.t. G.

Note that Sy, Uy, E,’f and E] are invariant w.r.t. each group of orthogonal
transformations.

Definition 5.2 The G-orbit of a point y € R" is the set {g(y) : g € G}.

A G-orbit of a given point is obviously an invariant set w.r.t. G. Observe
that the number «f points in an orbit depends on the given point.

Example 5.1 Letn =2, Q= {(z,y) : =1 < z,y < 1} and G the group
of linear transformations for which € is G-invariant. The group can be
represented by the following set of matrices:

o) (L) (o L) (1 d)
(o &) (1 o) (5 1) (5 0

The orbit of an arbitrary point (a,b) is

{(a’v b)’ (b7 _a)’ (_a’ _b)? (_bv a), (a7 _b)’ (b’ a)’ (_av b)a (—b, -a)}'
Orbits can have less than 8 points:
e the orbit of (a,a), a # 0, is {(a, a), (—a,a), (a, —a), (—a,—a)}
e the orbit of (a,0), a # 0, is {(a,0), (—a,0),(0,a),(0,—a)}
e the orbit of (0,0) is {(0,0)}.

The most important symmetries for our purposes are central symmetry
and shift symmetry.

Definition 5.3 A set, integral or, respectively, cubature formula is called
centrally symmetric if it remains unchanged under reflection through the
origin, that is, it is invariant w.r.t. the group of transformations

Ges == {x— x,x — —x}.

Given a € R", let {a} € [0,1)™ denote the vector each of whose compon-
ents is the fractional part of the corresponding component of a.

Definition 5.4 A set, integral or cubature formula is called shift symmet-
ric if it is invariant w.r.t. the group of transformations

Gooi= {x—xx = {x+ (3o ).

Shift symmetry is for the trigonometric-degree case what central sym-
metry is for the algebraic case. C, is centrally symmetric and C is shift
symmetric.
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The other important groups are the symmetry groups of regular polytopes
and their subgroups. The most common are:

An,n>2 : symmetry group of a regular simplex
B,,n>2 : symmetry group of a cube

F',n =2 : dihedral group, that is, symmetry group of regular m-gon
Is,n=3 : symmetry group of a regular icosahedron.

(The origin is the barycentre of the regular polytopes.)

In addition, the associated group A} is obtained from A, by adding the
reflection through the origin as generator to the group.

Regions and cubature formulae are often called fully symmetric when they
are By,-invariant, that is, when they are invariant w.r.t. the following group
of transformations:

Gp, = Grs:={(z1,...,2n) = (S1Zp;,-- ., SnTp,) :
sie{-1,+1}ie{1,....,nh{p,...,on} ={1,...,n}}.

Example 5.1 dealt with this group. Observe that fully symmetric regions
are also centrally symmetric.

Regions and cubature formulae are often called symmetric when they are
invariant w.r.t. the following subgroup of Grg:

Gs :={(z1,...,2n) — (81Z1,...,8nZn) : 8; € {—1,+1},i € {1,...,n}}.

Definition 5.5 A cubature formula is said to be invariant w.r.t. a group
G if the region €2 and the weight function w(x) are G-invariant and if the
set of points is a union of G-orbits. All points of one and the same orbit
have the same weight.

A G-invariant cubature formula can be written as

K
Q] ==Y wiQa(y)[f, (5.1)

=1

where the functional Qg(y¥)) is the average of the function values of f in
the points of the G-orbit of y(). Qc(y) is called a basic G cubature rule
operator.

5.8. Usefulness for cubature formula construction

The usefulness of symmetry groups in the context of constructing cubature
formulae is highlighted by the following result, due to Sobolev (1962). Let
F be a vector space of functions defined on ©Q C R™ that is G-invariant, so
that g(f) € F for all f € F and g € G.
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The G-invariant functions of F'
F(G):={feF:g(f)=f for all g € G}.
form a subspace

Theorem 5.1 Let G be a finite group of linear transformations acting
on F. Then, every G-invariant linear functional on F' is determined by its
restriction to F(G).

Proof. For every h € G we have

h (Z g(f)) =D h(g(f)) = > hg(£)) =D 9(f),

geG geG hgeG geG

hence 37 ¢ 9(f) € F(G).
Let I be a G-invariant linear functional on F', so that I[g(f)] = I[f] for

all f € F and g € G. Hence we have

I1f) = ﬁ S Ig(f) =1 [l—él ) g(f)} |

geG e

This proves the theorem, since we showed that for each f € F, a function
in F(G) exists such that the functional gives the same result for both. O

The usual formulation of this theorem is an obvious corollary and is gen-
erally known as Sobolev’s theorem.

Corollary 5.1 (Sobolev’s theorem) Let the cubature formula @ be G-
invariant. The cubature formula has degree d if it is exact for all invariant
polynomials of degree at most d and if it is not exact for at least one poly-
nomial of degree d + 1.

The exploitation of the symmetry of the region by imposing a structure
to the cubature formula has a simplifying effect. If one wants a G-invariant
cubature formula (5.1), the necessary and sufficient conditions (4.4) can be
replaced by the reduced system of nonlinear equations

Qloi] =I[gs), i=1,...dimVZ(G), (5.2)

where the ¢; form a basis for V(G). The larger the symmetry group G,
the lower the dimension of the space of all G-invariant functions and, con-
sequently, the easier it will be to determine a cubature formula.

Example 5.2 If p(x) is an algebraic monomial, deg(p) is odd, and Q is
a centrally symmetric cubature formula, then I[f] = Q[f] = 0. If ¢(x) is a
trigonometric monomial, deg(t) is odd and @ is a shift symmetric cubature
formula, then I[f] = Q[f] = 0. So the symmetry of the cubature formula
suffices to integrate odd-degree monomials exactly. This is in agreement
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with Sobolev’s theorem because all invariant polynomials for both groups
have even degree, and thus odd-degree monomials need not be taken into
account.

§.4. Invariant theory

We will now mention some results from invariant theory, a tool for working
with vector spaces of invariant polynomials. This will help us to set up the
system of nonlinear equations (5.2).

Definition 5.6 The G-invariant polynomials ¢1,...,¢; form an integrity
basis for the invariant polynomials of G if and only if every invariant poly-
nomial of GG is a polynomial in ¢4,...,¢;. Each polynomial ¢; is called a
basic invariant polynomial of G.

Because the degree of a polynomial is left unchanged by a linear trans-
formation of the variables, one can restrict the search of basic invariant
polynomials to homogeneous polynomials. If the number of basic invariant
polynomials | > n, then there exist polynomials equations, called syzygies,
relating ¢1, ..., ¢;. Syzygies come into play when calculating the dimension
of a vector space of invariant polynomials.

Some properties are summarized by the following theorems.

Theorem 5.2 There always exists a finite integrity basis for the invariant
polynomials of a finite group G.

Theorem 5.3 Let G be a finite group acting on the n-dimensional vector
space R™. G is a finite reflection group if and only if the invariant polyno-
mials of G have an integrity basis consisting of n homogeneous polynomials
which are algebraically independent.

Example 5.3 For the symmetry group of a regular m-gon, H7", it is very
convenient to use basic invariant polynomials in the variables ¢ and y, or in
polar coordinates r and 6:

oy = r? =x2+y2,

Om = r™cos(mf) =Y (—1) (727;) TN
=0

In HJ' one can distinguish two types of element: there are orientation-
reversing transformations (reflections) and orientation-preserving transform-
ations (rotations). The rotations of HJ* form a subgroup R% of order m.

5 is not a reflection group and thus an integrity basis consists of more than
two polynomials. In addition to o9 and o, one can use as basic invariant
polynomial

o, = r™ sin(mb).
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The syzygy relating oa, 0., and o), is

o — ok, — o2 = 0.

For proofs of the theorems, basic invariant polynomials and other inform-
ation we refer to Fisher (1967) and Flatto (1978).

6. Characterization of cubature formulae
6.1. Interpolatory cubature formulae

Because we are interested in cubature formulae with a ‘low’ number of
points, we can restrict our attention to interpolatory cubature formulae.
Indeed, when a non-interpolatory cubature formula is given, by applying
Steinitz’s Austauschsatz (Davis 1967) an interpolatory cubature formula that
uses a subset of the given points can be constructed.

Definition 6.1 If the weights of a cubature formula of degree d are uniquely
determined by the points, the cubature formula is called an interpolatory
cubature formula.

A cubature formula that is exact for all elements of V7 is determined by
a system of nonlinear equations (4.4) or (5.2):

Q[fl] ZI[fi}, 1= 1,...,dimvg, (61)

where the f; form a basis for V7. If the points of a cubature formula are
given, then (6.1) is a system of dim V} linear equations in the N unknown
weights. Hence an interpolatory cubature formula has N < dimV} and
there exist N linearly independent polynomials Uy, ...,Uny € V} such that

Ul(y(l)) UN(y(l))
det : : # 0.

Ul(y(N)) e UN(y(N))

These polynomials generate a maximal, not uniquely determined, vector
space of polynomials that do not vanish at all given points.

One can always find ¢ := dim V] — N polynomials py, ..., p; such that the
polynomials

Ul?"'aUN?pl""apt

form a basis for V]. Then one can solve

Ui(y®) ... Un(yD) a1 pi(y®)

U (y™M) ... Un(y™) a;N pi(y™)
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and so obtain ¢t = dim Vj; — N linearly independent polynomials
N
Rfi:pi_zaijij i=1,...,t (62)
j=1

that vanish at the given points of the cubature formula. We can replace the
polynomials p; in the basis of V}; by the polynomials R;.

With every cubature formula of degree d one can associate a basis of Vj
that consists of dim V; — N polynomials R; that vanish at all the points of
the cubature formula and N polynomials U; that do not vanish at all points.
A cubature formula is thus fully characterized by the polynomials R;. The
polynomials U; give rise to a linear system that determines the weights.

These characterizing polynomials provide the links between cubature for-
mulae on one hand, and orthogonal polynomials and ideal theory on the
other hand.

6.2. Orthogonal polynomials
Because each R; (6.2) vanishes at all points of the cubature formula,
Q[R:P] =0, forall PeV".
Because the cubature formula has degree d,
IR;P] = Q[R;P] =0 whenever R;P € Vj}.
And that brings us to orthogonality.

Definition 6.2 A polynomial f € V" is called d-orthogonal (w.r.t. a given
integral I), if I[fg] = 0 whenever fg € V}.

Definition 6.3 A polynomial f € V" is called orthogonal (w.r.t. a given
integral I), if I[fg] = 0 whenever deg(g) < deg(f).

The polynomials R; that characterize a cubature formula of degree d are
d-orthogonal.

In contrast with the one-dimensional case, in the n-dimensional case more
than one orthogonal polynomial of a given degree d exists. Sequences of or-
thogonal polynomials can be constructed with dim Vz”l linearly independ-
ent polynomials of degree d and many such sequences exist.

The trigonometric case
For the integral with region C7,

1= [ 76 ax

any trigonometric monomial is orthogonal to every trigonometric monomial
of a lower degree. Hence, these are the obvious choice when w(x) = 1.
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We have only found other weight functions in theoretical results where
orthogonal polynomials are only used implicitly.

The algebraic case
It is a generalization of a result of Jackson (1936) that there exist dim P7
unique orthogonal polynomials of degree d of the form

POLEZ O (g o Ty) = 270X X0 4+ Q (6.3)

with 37" a; = d and @ € Pj_;. The polynomials of the form (6.3) are
called basic orthogonal polynomials.

For so-called product regions, that is, when the region of integration is
a product of intervals and the weight function is a product of univariate
functions, so that

by bn
I[f] = wy(z1) ... wp(zn) f(x)day, ... dag,

ax an

the basic invariant polynomials are products of monic univariate orthogonal
polynomials. For example, in Ca, we have P®!(x,y) = Py(z)P,(y), where
P;(z) is the monic Legendre polynomial of degree ¢ in xz. The regions C,
and E,le are product regions and their basic invariant polynomials are the
product of monic Legendre and Hermite polynomials, respectively.

As the explicit expressions for the basic orthogonal polynomials for S,
and T, are not well known, we list them here.

Sp: Let @ € N* and 8 < /2 (that is, 0 < 8 < o;/2 for i = 1,...,n).
Then,

-3 (1 |;3|F lal — 18] + n/2) H a;! <28
B<a/2 |a| + n/2)22|ﬁ| j=1 ( - 25])'/6]
See Appell and Kampé de Fériet (1926).

T,: Let o € N* and # < « (that is, 0 < 8; < ; for i =1,...,n). Then,

o) = 7 (—p)el+iai ol + 18l n — 1! ( <>_)ﬂ
P(x) = (-1l 2la] +n—1)! 1;11 5 a1 <

B<a

See Appell and Kampé de Fériet (1926) for n = 2 and Grundmann and
Moller (1978) for n € N.
ET‘

T An explicit expression for the basic invariant polynomials has not yet
been shown.

The basic orthogonal polynomials reflect the symmetry of the integral. If
the integral is centrally symmetric then the basic orthogonal polynomials
of even (odd) degree consist of even (odd) degree monomials only. If the
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integral is fully symmetric then the basic orthogonal polynomial P*(x) with
all a; even (odd) consists only of monomials with even (odd) powers of z;,
for all i € {1,...,n}. Furthermore, PP(?)(x) = P*(p(x)) where p performs
a permutation on the components of its vector argument.

The structure of basic invariant polynomials motivates the following.

Definition 6.4 A set of polynomials S is called fundamental of degree d
whenever dim Vs_l (= dim Vj —dim V}* ;) linearly independent polynomials
of the form 27" ... 20" + Qq, Qa € V§_;,|a] = d, belong to span S.

6.3. Polynomial ideals

The polynomials U; and R; are not uniquely determined. The direct sum of
the vector spaces generated by these polynomials is

span{U;} @ span{R;} = V7.

span{R;} is more than simply a vector space. Indeed, if one multiplies a
polynomial that vanishes at all points of the cubature formula by an arbit-
rary polynomial, the product also vanishes at all points. And that brings us
to ideals.

Definition 6.5 A polynomial ideal 2 is a subset of the ring of polynomials
in n variables V" such that if fi, fo € 2 and g1, g2 € V", then f1g1+ fogo € 9.

The genesis of ideal theory is described in Edwards (1980). In this section
we describe the part of ideal theory needed in this paper.

Definition 6.6 If 2 is a polynomial ideal, then the set of polynomials
{f1,..-, fs} C A form a basis for 2 if each f € A can be written in the form

)
f= Zgjfj where g; € V".
j=1
The ideal generated by {f1,..., fs} is

(fl,...,fs) = {f= Zg]’f]’ 1 g5 GV”}.
j=1
The polynomials R; that characterize a cubature formula generate an
ideal, denoted by (R;y,..., Ry).
Theorem 6.1 For any polynomial ideal there exists a finite basis.
Proof. See Hilbert (1890). O

There are several types of bases for ideals. For our purposes, H-bases
and G-bases are important. H-bases are important as a theoretical tool.
Their power will be shown by the short proof of Theorem 6.7. G-bases
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are important because algorithms exist to construct them and to derive
properties of the ideal. It is thus very convenient for us that with some
restrictions a G-basis is also an H-basis (Buchberger 1985, Moller and Mora
1986, Sturmfels 1996).

Definition 6.7 Let 2 be a polynomial ideal. The set {f1,..., fs} C 2 is
an H-basis for 2 if for all f € A there exist polynomials g1, ..., gs such that

F=Yg;if; and deg(g;f;) <deg(f), j=1,...,s.

j=1
Theorem 6.2 For any polynomial ideal an H-basis exists.

Proof. See Moller (1973). O

Other names for an H-basis are canonical basis and Macaulay basis.

Before defining G-bases, also called Grébner-bases, we have to introduce
some notation. Let the set of monomials M = {x® : o € N"} be ordered
by < such that, for any f, fi,fo € M, 1 < fand fi < fo imply ffi <
ffe. Let f =32 ¢ fi with f; € M and ¢; € Rg. Then the headterm of
f = Hterm(f) := fm, and the mazimal part of f = M(f) := cnfm. For
f,g € P"\{0} let

H(f,g) :=lcm{Hterm(f), Hterm(g)}. (6.4)

Let F C P™\{0} be a finite set. We write f —F g if f,g € P™ and
there exist h € P", f; € F such that f = g + hf;, Hterm(g) < Hterm(f) or
g = 0. The map - is called a reduction modulo F. By 7)+ we denote

the reflexive transitive closure of T

Definition 6.8 A set F := {f1,..., f1} is a Grobner basis (G-basis) for
the ideal 2 generated by F' if

f € 2 implies f?"rO.
Theorem 6.3 Let F' := {f1,...,fs} C P"\{0} and let A be the ideal
generated by F'. Then the following conditions are equivalent.

e F'is a Grobner basis of 2.

e For all (4,j) with 1 <i< j<s,
M(f:)

Proof. See Méller and Mora (1986). O

H(f:, f;)

SP(fisf;) = T3

fi—

, +
fJ—;’ 0.

Theorem 6.3 provides an algorithmic way to verify if a given set is a
G-basis. Practical implementations incorporate several shortcuts. For ex-
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ample, according to Gebauer and Moller (1988), a pair (f;, f;) is superfluous
if H(f1, f;) divides properly H(f;, f;) and I < j.

Theorem 6.4 If < is compatible with the partial ordering by degrees,
that is, deg(f) < deg(g) implies Hterm(f) < Hterm(g), then a G-basis with
respect to < is also an H-basis.

Proof. See Moller and Mora (1986). O
Definition 6.9. (Nullstellengebilde) The zero set of an ideal  is
NG(Rt) :={yeC": f(y)=0 forall feA}

If NG(2) is a finite set of points, then the ideal is called zero-dimensional,
and obviously any basis for 2 consists of at least n polynomials.

An important function of a polynomial ideal is the Hilbert function (Hil-
bert 1890). It is useful to count the number of elements of NG(2).

Definition 6.10 The Hilbert function H is defined as

dimP? — dim(ANPY), k€N,
i P07 Ko,

Theorem 6.5 If H(k;™) = H(K ;) for all £k > K holds for a sufficiently
large K, then the polynomials in 2 have exactly H(K;2) (complex) common
zeros if these are counted with multiplicities.

Proof. See Grobner (1949). O

Definition 6.11 An ideal 2 is a real ideal if all polynomials vanishing at
NG(2) NR™ belong to o, that is,

fen ifandonlyif f(y)=0, forallye NGA)NR".

Note that the theorems given in this subsection are proven only for algeb-
raic polynomials in the literature. We do not see any problem in their ap-
plication to ideals of invariant algebraic polynomials or trigonometric poly-
nomials.

Within the ideal theoretical framework we can rephrase Theorem 3.1.

Theorem 6.6 Let I be an integral over an n-dimensional region. Let
{yO, .. ,yW™M}lccrand 2 := {f e V*: f(y®D) =0,i=1,...,N}. Then
the following statements are equivalent.

e feANVy implies I[f] = 0.

e There exists a cubature formula @ (3.7) such that I[f] = Q[f], for all
f € V3, with at most H(d;A) (complex) weights different from zero.

Proof. 'This theorem is proven by Moller (1973) for the case Vi = P7. O
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The role of H-bases is illustrated by the following theorem by Méller
(1973).

Theorem 6.7 If {fi,...,fs} is an H-basis of a polynomial ideal 2 and
if the set of common zeros of fi,..., fs is finite and nonempty, then the
following statements are equivalent.

e There is a cubature formula of degree d for the integral I which has as
points the common zeros of fi,..., fs. (These zeros may be multiple,
leading to the use of function derivatives in the cubature formula.)

e f; is d-orthogonal for I, =1,2,...,s.
Proof.
‘=’: Let gf; € P}. Then I{gf;] = Zé‘v:l w;g(y9) f;(y9) = 0, since f; € 2.
‘=’: Let f € AU Py. Then, with g; as given in the definition of H-basis,
I[f] =13 9fil = 0.
O

Schmid managed to give a characterization of cubature formulae with real
points and positive weights using real ideals.

Theorem 6.8 Let {R;,...,R;} C Pj,; be a set of linearly independent
d-orthogonal polynomials that is fundamental of degree d + 1. Let % :=
(R1,...,Rt) and V := span{Ry,...,R;}. Let N+t =dimPy, , and U an
arbitrary but fixed vector space such that Pj,, = V@U. Then the following
statements are equivalent.

e There exists an interpolatory cubature formula of degree d
N . .
QU =Y w;f(yY), yDeRr", w;>0
j=1
with {y(M, ...y} c NG(2).
e 2 and U are characterized by:

(i) ANU = {0}
(ii) I[f? — R*] > 0 for all f € U, where Rt € 2 is chosen such that
fA— Rt ePL.

e A is a real ideal and [NG(2) NR™| = N. The points of the cubature
formula are the elements of NG(21) NR™.

Proof. See Schmid (1980a). O

This characterization was used to develop the T-method for constructing
cubature formulae; see Section 9.2.
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6.4. Tchakaloff’s upper bound

To conclude this section we will prove an upper bound for the number of
points in an interpolatory cubature formula using the concepts from ideal
theory just introduced. We mentioned this result at the beginning of this
section.

Corollary 6.1 If an interpolatory cubature formula of degree d for an
integral over an n-dimensional region has N points, then N < dim Vj.

Proof. Suppose a given cubature formula of degree d has M points. Let
A be the ideal of all polynomials that vanish at these points. According
to Theorem 6.6, there exists a cubature formula with N < H(d;%) < M
of these points, and from the definition of the Hilbert function, it follows
immediately that N < H(d;2) < dim V. A basis of any complement of
2ANV7Y in Vj can be used to construct a set of linear equations to determine
the weights.

The above corollary is an elementary version of Tchakaloff’s theorem.

Theorem 6.9 (Tchakaloff’s theorem) Let I be an integral over an n-
dimensional region {2 with a weight function that is nonnegative in {2 and
for which the integrals of all monomials exist. Then a cubature formula of
degree d with N < dim V} points exists with all points inside 2 and all
weights positive.

Proof. This theorem was proven by Tchakaloff (1957) for bounded regions
and by Mysovskikh (1975) for unbounded regions for Vj = Pj. O

We will now prove, along the lines of Mysovskikh (1981), that this is the
smallest general upper bound. We will construct an n-dimensional region
for which a cubature formula of degree d with fewer points than dim V; does
not exist.

Let i := dim V] and choose distinct points al ... a® ¢ R™ that do not
lie on a curve of order d. Let C; be a cube with centre al® and side p, such
that the p cubes do not intersect. We will now show that, for sufficiently
small p, no cubature formula of degree d exists for d = C; U ... UC, and
w(x) = 1 with all points inside Q and all weights positive.

Assume that such a cubature formula exists and let C; be the subregion
containing no point of the cubature formula. Let p(x) € V} satisfy

p(a(l)) =1, p(a(i)) =0 for i=2,...,u,
and ¢ a number such that

1
0<o< —. (6.5)
21
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Take p small enough such that p(x) > 1 -0, for x € (1, and |p(x)| < o, for
x € UL ,C;. Then

/Qp(x)dx‘ = ’/Clp(x)dx+i/>p(x)dx

TRG tz/ )dx

=2
2 (1-0)p"—(p—1)op
= p"(1—po).

v

On the other hand,

p p
S wip(y") <o 3wy =opp™
j=1

j=1
From the exactness of the cubature formula it follows that

(1—po)p™ <opp™ ifandonlyif 1< 2u0,
which contradicts (6.5).

7. In search of minimal formulae
7.1. A general lower bound

We consider cubature formulae of the form
N
Q) =Y wify), w;eR, (7.1)
j=1

for the approximation of the integral (3.1). In this section we identify the
polynomials which are identical on the integration region €2, and we restrict
our attention to cubature formulae with all points inside 2. This identifica-
tion leaves the polynomial space unchanged if and only if 2 contains inner
points.

Example 7.1 Consider the surface of the unit balt: Q = {x: Y1 2% =

1}. Then the polynomials (3°%,z?)?, p € N, are all identified w1th the
constant polynomial 1. So,

anin- ("9)-(4°%)

Theorem 3.1 can be used to derive a very general lower bound. Good lower
bounds are important because any method to construct cubature formulae
(implicitly or explicitly) depends on a bound or estimate of the number of
points. If a lower bound is known, then a method to construct cubature
formulae attaining this bound is usually known.
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Theorem 7.1 If the cubature formula (7.1) is exact for all polynomials of
V3., then the number of points N > dim VZIQ.

Proof. Let F =V"q, F1 = V¢|a and
Fo={feF :fy?)=0j=1,...,N}

If f € Fy, then deg(f) < k and f(y@)) =0, j=1,...,N. Because f? is of
degree at most 2k, the cubature formula is exact and I[f?] = 0. Hence, on
Q, f =0. So far, we have proved that

f € Fy implies f=0.
Let @ be a linear functional defined on Vi|q. Then
feFR=f=0=>Q[f]=0.

From Theorem 3.1 it follows that weights w; can be found such that
N .
Qlf) =3 w;f(y"), forall feVy.
j=1

So, the vector space spanned by the functionals L;[f] = f (y9) is equal
to the space of all linear functionals defined on V%|q. Its dimension is also
dim V%|o. Hence N > dim Vi|q. O

For regions with interior points and algebraic degree, Theorem 7.1 is given
by Radon (1948) for n = 2, and for general n by Stroud (1960). It should be
noted that the well-known proof of the Radon—Stroud lower bound does not
assume all points are inside the region. This restriction plays a role if one
includes regions such as the surface of the n-ball, without interior points.
For the surface of the n-ball, this result was given by Mysovskikh (1977).
Table 1 lists all known formulae that attain the lower bound, for the regions
we mentioned in Section 5.

For trigonometric degree, this theorem was probably first mentioned by
Mysovskikh (1988). Table 2 lists all known formulae that attain the lower
bound. Cools and Reztsov (1997) proved it for other spaces of trigonometric
polynomials.

For regions with interior points and product algebraic degree, this theorem
was presented by Gout and Guessab (1986). The bound is attained by Gauss
product formulae. For other spaces of algebraic polynomials it was presented
by Guessab (1986). The general formulation we gave is from Moller (1979)
with a proof due to Mysovskikh (1981).

Because dimP, = (dimf}i)" and dim7, = (dimT}i)", this bound is
attained for the overall degree case by the product rules based on minimal
quadrature rules. Hence in the rest of this paper, not much attention is paid
to this case. As Tables 1 and 2 illustrate, the ordinary degree case is totally
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Table 1. Minimal formulae of algebraic degree

n [ d | N [ regions | references
n| 2 n+1 Cr, Sn,Tn, U, | see Stroud (1971), Mysovskikh (1981)
21d |d+1 U, see Stroud {1971)
2k % CcY5 Morrow and Patterson (1978)
4 |6 Cy, 85,15, E5 | see Stroud (1971),
Cools and Rabinowitz (1993)
6 | 10 Cs Schmid (1983)
Ty Rasputin (1983a)
Ss Rasputin (1986),
Wissman and Becker (1986)
8 |15 Csy Morrow and Patterson (1978)
T, Cools and Haegemans (1987¢)
314 10 Cs Weif} (1991)

Table 2. Minimal formulae of trigonometric degree for C},

n | d | N ] references
n|2 |[2n+1 Noskov (1988b)
2 | 2k | 2k® + 2k + 1 | Noskov (1988b)

different: odd degree formulae do not appear in these tables (except for Us)
and the known even degree formulae are rare.

The following theorem teaches us something about the weights. It gener-
alizes a theorem from Mysovskikh (1981).

Theorem 7.2 If the cubature formula (7.1) is exact for all polynomials
of degree d > 0 and has only real points and weights, then it has at least
dim V} positive weights, k = | £].

Proof. According to Theorem 7.1, N > dim V; = k. Because d > 0, the
cubature formula is exact for f = 1, that is, Z;-V:l w; = I[1] > 0. Hence
there must be positive weights. If d = 1, then x = 1 and the theorem holds.

We now consider d > 2 and assume the theorem does not hold. Let the
number of positive weights v < k and order the points of the cubature
formula such that these positive weights correspond to y, ..., y®). Then
one can find a polynomial p € V} such that p(y(j)) =0,j=1,...,v.
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The cubature formula is exact for p?, hence
N .
Ip? = Y wip*(y?).
j=v+1
Because I[p?] > 0, p?(y"")) > 0 and w; < 0 we obtain a contradiction, hence
our assumption was wrong. O

Corollary 7.1 If a cubature formula attains the lower bound of Theorem
7.1, then all its weights are positive.

Theorem 7.1 gives the same lower bound for cubature formulae of degree
2k and 2k + 1.

7.2. The characterization of minimal formulae and the reproducing kernel

For even degrees, I am unaware of any greater lower bound than that given
in Theorem 7.1. The fact that not many formulae that attain this bound
exist for the ordinary algebraic or trigonometric degree case has to do with
the practical problems one encounters while attempting to construct these
formulae. In this section, the reproducing kernel approach to construct
cubature formulae is explained.

The concept of ‘reproducing kernel’” was first used for the construction
of cubature formulae of algebraic degree by Mysovskikh (1968). For the
trigonometric degree case it was first used by Mysovskikh (1990).

Choose the polynomials ¢1(x), ¢2(x),... € V™ such that ¢;(x) is ortho-
gonal to ¢;(x), for all j < i, and I[¢;¢;] = 1. This means that {¢;(x)}; is
an orthonormal basis of V". For a given k € N we set x := dim V} and

K(xy) = Y 8i(0bi(y).

=1

K (x,y) is a reproducing kernel in the space Vi: if f € Vg, then f coincides
with its expansion in ¢;, so that for a € C" fixed,

f(a) = I[f(x)K(x,a)] = Y IIf(x)¢i(x)]¢i(a).
i=1
The reproducing kernel K(x,y) plays an important role in connection

with Theorem 7.1, as the next theorem illustrates.

Theorem 7.3 A necessary and sufficient condition for the points y(?,
j=1,...,N =dim V%, to be the points of a cubature formula that is exact
for V3, is that

K(y",y®) = b6, (7.2)
with b, # 0 and é,; the Kronecker symbol.
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Proof. To prove the necessity, assume a cubature formula (7.1) exists that
is exact on V5. Hence, it is exact for

¢I(X)¢m(X), l’m:]-?"'aNa

and due to the orthonormality of the ¢;, we obtain
N - . .
> wibi(yD)pm(yD) = G- (7.3)
j=1

Let W := diag(wy,...,wn), E the unit matrix, and let A be
oi(y®) ... aily™)
A= : :
on(yM) ... on(y™)
Then (7.3) can be written as
AWA* = E,

where A* denotes the Hermitian conjugate of A. A is non-singular, for
otherwise there is an element of V}} that vanishes at all points of the cubature
formula, which is impossible.

W is also non-singular, so we obtain

W =A"ta")"!
or
A*A=W"1
We deduce (7.2) with

N
b = 1/we =Y |1 (y™)> > 0.
i=1

(Remember Corollary 7.1!)
Sufficiency remains to be proven. Conditions (7.2) can be written as

A*A = B,
where B := diag(by,...,bx) is non-singular. This is equivalent to
AB7'A*=E,
which in turn is equivalent to saying that the cubature formula with points
y9),j=1,...,N, and weights w; = 1/b; is exact for
o (X)pm(x), I,m=1,...,N,

and thus for all elements of V5;. (The final step of this proof motivated the
warning at the end of Section 3.) O
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For the algebraic-degree case, the reproducing kernel approach has not
been very successful in constructing minimal cubature formulae. It can,
however, also be used to construct non-minimal formulae; see Moller (1973)
and Mysovskikh (1980). Moller (1973) also gave a modified reproducing
kernel method to construct centrally symmetric cubature formulae of odd
algebraic degree. This modification is based on the same idea we use in the
following section to derive a lower bound for such formulae. Cools and Sloan
(1996) used a similar modified method to construct minimal shift symmetric
cubature formulae of odd trigonometric degree. In this case an infinite
number of minimal cubature formulae for each odd degree was obtained in
the two-dimensional case.

The reproducing kernel approach has also led to interesting results on
the weights of cubature formulae (Cools and Haegemans 1988¢, Cools 1989,
Beckers and Cools 1993). Such results have also led to the following theorem.

Theorem 7.4 A cubature formula of degree d = 2k with N = dim P}
points does not exist for U, if n > 2 and k£ > 2.

Proof. See Taylor (1995). O

For other characterizations of cubature formulae attaining the bound
of Theorem 7.1, see, for instance, Morrow and Patterson (1978), Schmid
(1978), and Schmid (1995).

7.8. The general lower bound for some invariant formulae

Although Theorem 7.1 has already shown many of its faces in the literature,
it has not yet unveiled all. We will now show what it can teach us about
centrally symmetric cubature formulae. In combination with Theorem 5.1,
Theorem 7.1 gives a lower bound for the number of G-orbits in a G-invariant
cubature formula. This can be translated into a lower bound for the number
of points by multiplying it with the highest possible cardinality of a G-orbit,
but one expects this will not usually give strict bounds. There is, however,
an interesting exception ...

Consider centrally symmetric cubature formulae of algebraic degree 2k +1
with & even. According to Theorem 7.1, the number of orbits of this cubature
formula, K, satisfies

k/2 :
K >dimPY(Ges) =Y (n— 1 +2z) '

n—1
i=0

A Gcs-orbit has one or two points and there can be only one orbit with one
point. Hence the above bound for K implies a bound for the number of
points:
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For example, for n = 2, we obtain

k/2 2
. k k+2 k
N>2Y) (2i+1)—1=—+2k+1= =
_izo(H) 5 t2k+ (2)+2

For Cy, for instance, this bound is now known to be sharp for degrees 1,5
and 9. Consider shift symmetric cubature formulae of trigonometric degree
2k + 1. A G4s-orbit always has two points. Using the same arguments as in
the previous paragraph, we obtain the lower bound

N > 2dim THGys).

for the number of points.

These results, which are derived under the restriction of central symmetry
and shift symmetry, will appear again in Section 8.3.

The following questions have probably already occurred in the reader’s
mind while reading this section.

e Under what conditions is the lower bound of Theorem 7.1 sharp?

e What is the minimum number of points for a cubature formula for a
given region?

e Is the symmetry of the region somehow reflected in the structure of
minimal formulae?

These questions have kept researchers busy for approximately 50 years now,
and are still only partially answered. We return to them in the next section.

8. In search of better bounds for odd degree formulae
8.1. The need for a better bound

In Section 7.1 we obtained a lower bound for the number of points N of
a cubature formula that is exact on a vector space of functions V7. This
bound, presented in Theorem 7.1, depends only on V7, restricted to €. In
this section we will see that this bound is in general too low for odd degrees
d. Higher lower bounds have to take into account more information on the
region {2 and weight function w(x).

Suppose we have a cubature formula of algebraic degree d = 2k + 1 that
attains the lower bound of Theorem 7.1, and let A be the corresponding
ideal. Then

H(k; %) =dim Py = N = H(d; ).

Hence the ideal contains dim Py, — dim P} linearly independent polyno-
mials of degree k 4+ 1. These polynomials must be d-orthogonal and thus,
because of their degree, simply orthogonal. So we have in fact proved the
following theorem.
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Theorem 8.1 A necessary condition for the existence of a cubature for-
mula of algebraic degree 2k + 1 with N = dim P}, points is that the basic
orthogonal polynomials of degree k + 1 have N common zeros.

The condition of Theorem 8.1 does not hold for standard regions such as
Ch, Ty, Sn, E}f and E]. Radon (1948) discovered that no cubature formula
of degree 5 with 6 points exists for Cy, T3, and S5.

8.2. The quest for exceptional regions

Fritsch (1970) searched for an n-dimensional region for which a formula of
degree 3 with n + 1 points exists. He defined a region S,(d) as follows. Let
Sr be the n-simplex with vertices vg,vy,...,v, and centroid c. Let F} be
the face of S, that does not contain the vertex v; and let ¢; be the centroid
of Fi. Let d > 0 and define the points ux(d) by

ug(d) =dex + (1 —d)c, k=0,1,...,n.
Let Spi(d) be the simplex with base Fj, and vertex ux(d). Define

f SuU(Upo Sukld), d> 1,
i@ ={ g R Ty, 02d<n

Fritsch constructed a cubature formula of degree 3 with n+ 2 points depend-
ing on n and d for the region S,(d). He proved that there exists a d, > 1,
a zero of a known polynomial, such that his formula has a zero weight, and
thus uses only n + 1 points. For two dimensions he found two such regions,
as shown in Figure 2. He also proved that there exists one d}, for which
a formula of the form he looked for does not exist. For two and three di-
mensions the region S,(d}) is centrally symmetric (that is, the region and
weight function remain invariant after reflection through the centre) and we
will see later that the minimal number of points in a formula of degree 3 for
such a region requires 2n points.

Mysovskikh and Cernicina (1971) constructed a region Q = Q; Uy with

& = {("E7y):_TS$§T,OSyS6_|1‘|},
QB = {(r,y):—0<z<0o, —e<y<0},

T7T=3, ¢~0.048, 0 ~ 1.266,

for which there exists a cubature formula of degree 5 with 6 points.
Recently, Schmid and Xu (1994) found a two-dimensional region for which
formulae with dim ’P% points exist for each degree 2k + 1.

Theorem 8.2 Let W (u,v) := w(z)w(y) with w(t) := (1 —t)*(1 +¢t)? and
let
Q={(u,v): (z,y)c[-L1]?, z<y,u=z+y, v=ay}.
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dy = 5.15815028... d = 0.77547178...

Fig. 2. Regions Sy(dz) for which a formula of degree 3 with 3 points exists

Fig. 3. Region for which a formula of degree 2k + 1 attains the bound of
Theorem 7.1

Then there exists an infinite number of minimal cubature formulae of degree
2k and one (uniquely determined) minimal formula of degree 2k + 1 (both
with dim P2 points) for the following two classes of integrals,

/Qf(u,v)W(u,v)(u2 —4v)"dudv with a,8> -1, v= :!:%.

Proof. See Schmid and Xu (1994). O

Figure 3 displays Q. Berens, Schmid and Xu (1995) obtained a similar
result for arbitrary dimensions.

8.3. Improved bounds for centrally symmetric formulae

In Example 5.2 and at the end of Section 5 we encountered the pleasant
effect of central symmetry on cubature formulae of algebraic degree. Myso-
vskikh (1966) showed that for centrally symmetric n-dimensional regions,
the minimal number of points in a cubature formula of algebraic degree 3
is 2n. The construction of such formulae is summarized by Stroud (1971).
Méller (1973) generalized this improved lower bound for all odd degrees.



36 R. CooLs

Theorem 8.3 Let Ry, denote the vector space of even polynomials of
P3i41lo and Rogy denote the vector space of odd polynomials of P35y 4|,
k € Ng. If the algebraic degree of the cubature formula (7.1) for a centrally
symmetric integral is d = 2k + 1, then

N > 2dim Ry — 1, if k even and 0 is a point,
N > 2dim Ry, otherwise.

A cubature formula that attains this bound is centrally symmetric and has
all weights positive.

Proof. See Moller (1973) for the case where 2 has interior points and Méller
(1979) for the general case. O

A similar result holds for cubature formulae of trigonometric degree.

Theorem 8.4 Let R;, C 7} denote the vector space of polynomials whose
degree has the same parity as k. If the trigonometric degree of the cubature
formula (7.1) for an integral over C is d = 2k + 1, then

N >2 dim Rk.
Proof. See Mysovskikh (1988). O
A nice result about the weights was obtained using the reproducing kernel.

Theorem 8.5 A cubature formula that attains the bound of Theorem 8.4
has all weights equal to 1/N.

Proof. See Beckers and Cools (1993). O

To illustrate my belief in the similarities between the algebraic degree case
and the trigonometric degree case, as well as the similarities between central-
symmetry and shift symmetry, I dare to pose the following conjecture.

Conjecture 8.1 Any cubature formula attaining the bound of Theorem
8.4 is shift symmetric.

How good are the lower bounds of Theorems 8.3 and 8.47 For two di-
mensions it is now known that these bounds are the best possible if further
information on the integral is not available.

For the regions C$-% and cy 05 cubature formulae attaining the lower
bound of Theorem 8.3 exist for arbitrary odd degree (Cools and Schmid
1989). In Table 3, we list the known minimal formulae for standard regions.
For some regions, for instance S and Ej 2, it has been proved that the bound
of Theorem 8.3 cannot be attained for degrees 4k + 1, & > 1. For Cy, it
is known that a cubature formula of degree 13 with 31 points cannot exist.
For these regions at least one additional point is required (Verlinden and
Cools 1992, Cools and Schmid 1993).
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Table 3. Minimal formulae of odd algebraic degree

references
n|d | N Co | Su | EL | EF,
213 |4 1 |1
5 |7 1y | 1]
7l ||
9 | 17(18) | 3] | [2] | [4]
11 | 24 5]
303 |6 1]
s 0 forwlm |
(1] = Stroud (1971), [2] = Piessens and Haegemans (1975), [3] = Méller (1976),
[4] = Haegemans and Piessens (1977), [5] = Cools and Haegemans (1988a),

* = Many known formulae; see also Cools and Rabinowitz (1993).

Table 4. Minimal formulae of odd trigonometric degree for C},

n|d ‘ N | references
nil 2 Mysovskikh (1988)
3 4n Noskov (1988a)
2
2id @ Beckers and Cools (1993)

Cools and Sloan (1996)
315 38 Frolov (1977)

For C3, cubature formulae attaining the lower bound of Theorem 8.4
exist for arbitrary odd degree (Cools and Sloan 1996). In Table 4, we list
the known minimal formulae for C7.

8.4. An improved general bound for odd degrees

We will now present a lower bound especially derived for odd algebraic
degrees, d = 2k + 1, without any assumptions on the symmetry of the
region. Let

Ort+1:={f € Piy1:9 € Py = I[fg] =0},
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Table 5. Minimal formulae of odd algebraic degree for T,

n|d| N | references
2134 Stroud (1971), Hillion (1977)
5|7 Stroud (1971)
7112 Gatermann (1988), Becker (1987)
n | 3 | n+2| Stroud (1971)
413|6 Stroud (1971), Grundmann and Méller (1978),
de Doncker (1979)

and define for arbitrary [ € {2,...,n}

v o= dim{(fla---afl)EOfﬂd

l
szfz € Pz-f—l } ’

i=1

!
> aifi€ Ok+1} :

i=1

~ dim{(fl,...,fl) € 0L,y

Theorem 8.6 If a cubature formula has algebraic degree 2k + 1, then
N > dim P} + 2.

Proof. See Moller (1976) (I = 2, 2 with interior points), and Méller (1979).
O

For two dimensions, the bounds of Theorems 8.3 and 8.6 coincide for
centrally symmetric integrals:

(k+1)2(k+2)+[k;1J'

For more than two dimensions, Theorem 8.3 gives a higher lower bound than
Theorem 8.6 for centrally symmetric integrals. Theorem 8.6 was applied by
Moller to the triangle To. He obtained (8.1) for 0 < k < 5. Rasputin
(1983b) generalized this to all k. Berens and Schmid (1992) proved that
the same lower bound is obtained for some non-constant weight functions.
In addition, Mdller (1976) obtained the following results for 7,: for k = 1,
v2 = 2 and for k = 2, o0 = 2n — 2. In Table 5 the known minimal formulae
for this region are listed.

N> (8.1)

8.5. The quality of lower bounds

In this section we have presented the best known lower bounds for the num-
ber of points in cubature formulae of odd degree. We gave examples showing
that these bounds can be attained for some regions. If one looks at Tables
3, 4 and 5, the results for standard regions look meagre: minimal formulae,
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that is, formulae attaining a known lower bound, are known only for low
dimensions and low degrees. It is likely, but not certain, that these bounds
are too low for standard regions and for higher degrees or dimensions. This
uncertainty is one of the main problems in the construction of cubature for-
mulae and the construction methods based on characterizing polynomials
suffer from it, as we shall see in the following section.

9. Constructing cubature formulae using ideal theory
9.1. A bird’s-eye view

Orthogonal polynomials were already being used by Appell (1890) and
Radon (1948) to construct cubature formulae of algebraic degree for two-
dimensional integrals. Radon tried without success to construct cubature
formulae of degree 5 with 6 points. He constructed formulae of degree 5 with
7 points using the common zeros of three orthogonal polynomials. His work
marked a starting point of a theory. During the 1960s, Stroud and Myso-
vskikh studied the relation between orthogonal polynomials and cubature
formulae for n-dimensional integrals. In the mid-1970s, many new, mainly
symmetric, cubature formulae were obtained using the common zeros of
three orthogonal polynomials in two and three variables; see, for instance,
Piessens and Haegemans (1975), Haegemans and Piessens (1976), Haege-
mans and Piessens (1977), Haegemans (1982). The theoretical results were
put in the framework of ideal theory by Moller (1973). Methods to construct
cubature formulae based on these and other theoretical achievements were
derived by Morrow and Patterson (1978), Schmid (1980b) and Cools and
Haegemans (1987b), amongst others.

We mentioned that one can also work with ideals of invariant polyno-
mials. Gatermann (1992) combined ideal theory with the theory of linear
representations of finite groups.

We will now present two successful methods to construct cubature for-
mulae of algebraic degree. In order not to over-complicate everything, we
restrict this to two dimensions.

9.2. The T-method

A starting point in Theorem 6.8 is that the ideal 2 is fundamental of degree
d+1. In general, 2 will be fundamental of degree [, [+1, ... where [d/2]|+1 <
I < d+ 1. Let m be such that 2 is fundamental of degree m, but is not
fundamental of degree m — 1. One can try to determine a set of polynomials
of degree m that form a basis of an ideal satisfying the conditions of Theorem
6.8. This idea was first suggested by Morrow and Patterson (1978) and
Schmid (1978) for two-dimensional regions. It was further developed by
Schmid (1980a); see also Schmid (1980b) and Schmid (1995).
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Consider the case where the ideal 2 associated with a cubature formula
of degree 2k — 1 is fundamental of degree k+ 1. Let Ry, ..., Rx+1 be linearly
independent polynomials of degree k£ + 1 in two variables, £ and y. These
polynomials are orthogonal to all polynomials of degree k — 2 if they vanish
at the points of a cubature formula of degree 2k — 1. Thus the R;s can be
written as

k k—1
Ry = PM1m0t 4 N B PRI 4 N PRI =0, k4 1,
§=0 §=0

where the P%® are the basic orthogonal polynomials (6.3). The B35 and ~;;
are parameters which have to be determined such that the R;s belong to
an ideal 2 satisfying the conditions of Theorem 6.8. When the integral is
centrally symmetric, the basic orthogonal polynomials have a special form
and the 3;; vanish.

The construction is based on the following observations.

o Let Q;,:=yR;,—xR;11,1=0,...,k. Then Q; is a polynomial of degree
k and @; has to be orthogonal.

e The polynomials z@Q;, yQi,¢ = 0,...,k, are of degree k + 1 and they
belong to 2. Thus zQ;, yQ; € span{ Ry, ..., Rk+1}

Both conditions lead to necessary conditions: linear and quadratic equations
in the ;;s. Starting from the explicit expressions for the basic orthogonal
polynomials, a computer algebra system can be programmed to derive these
equations. The linear equations can then be used to reduce the number
of unknowns in the system of quadratic equations. In the resulting system
the number of equations and unknowns is usually different. More recently,
Schmid (1995) worked this out in detail using matrix equations.

The inequality in Theorem 6.8 translates into inequalities for the ~;;.
These inequalities together with the linear and quadratic equations give ne-
cessary and sufficient conditions for the ;;s so that all conditions of Theorem
6.8 are satisfied. Schmid (1983) used this method to construct cubature for-
mulae of degree < 9 for C§. Cools and Schmid (1989) used it to construct
formulae of arbitrary odd degree for Cy 0-5 and C95.

We will now prove, using G-bases, that the above method works. A similar
proof for the n-dimensional case is given by Moller (1987).

Theorem 9.1 Let
R4 = Pk+1_i7i + Z.I;;é 7ijpk_1_j’j’ .] = 07 LR k + ]-7

i = yRi—zRip, i=0,....,k
If the polynomials @; are (2k —1)-orthogonal and if all polynomials zQ;, yQ;

are elements of span{Ry,..., Rkt1}, then F := {Ry,..., Rk41,Qo,--.,Qr}
is a G-basis.

(9.1)
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Proof. We use the term ordering 1 <y < z < y?> < zy < z? < ..., apply
Theorem 6.3 and distinguish three cases.

Case 1: (R;,R;),4,j=0,...,k+ 1.
H(R;, R;) = o**171yJ. This is a divisor of H(R;, R;) = z*+1~%yJ for
i < j, if i < l. Hence the pair (R;, R;) is superfluous if there exists a [
such that i < I < j. Therefore we only have to check pairs (R;, R;y1).

But
H(R;, Riy1) H(R;, Ri11)
SP(R;, R; = ; — ;
(Ri, Rit1) M(R,) R; M (B Rin

ghHl=igi+l ghH1—ig it

= Rt Iy R; - ph—iyitl Rit

= yRi—zRin

= Qi)

and thus SP(R;, R;+1) TWL 0.

Case 2: (Qi,Q;),1,j=0,...,k.
If Hterm(Q;) = Hterm(Q;) then SP(Q;, Q;) € span{Q;} and thus
SP(Qi,Qj)—F—>+0.
If Hterm(Q;) # Hterm(Q;) then there exist u,v € {z,y} for which
SP(Qs, Q) = SP(uQi, vQ;).
Because zQ;, y@; € span{Ry, ... Rk41} this reduces to Case 1.

Case 3: (R;,Qj),1=0,...,k+1,=0,...,k.
One can always find a u € {z,y} such that SP(R;, Q;) = SP(R;,u@;).
Since z, Q;, yQ; are in span{Ry, ..., Ri41}, this reduces to Case 1.

O

Theorem 9.2 Let F be as defined in Theorem 9.1. If the common zeros
of the polynomials in F are real and simple, then there exists a cubature
formula of degree 2k — 1 with the elements of NG(F') as points. The number
of points N < m
Proof. The ordering used in the proof of Theorem 9.1 is compatible with
the partial ordering by degree. According to Theorem 6.4, F is thus an H-
basis. Theorem 6.7 then guarantees the existence of the cubature formula.
An upper bound for the number of points in the cubature formula is given
by the Hilbert function. Because F' is fundamental of degree k& + 1,

H(2k —1,F) = H(k,F)
= dimP% — dim(P2N F)
= dimPZ_, 4+ codim(F NP3).
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There will be at least one polynomial Q;, hence codim(F NP3%) < k. Thus
N<HED Lk O

The upper bound of Theorem 9.2 is very weak. A tighter result is known.

Theorem 9.3 If the ideal of all polynomials that vanish at the N points
of a cubature formula of degree 2k — 1 contains a fundamental set of degree
k + 1, then

k(k + 1) k(k+1) |k
ML ]

k

— < <
NI :
Proof. See Cools (1989) or Schmid (1995). O

This clearly shows that the success of this method strongly depends on
the quality of the lower bound (8.1) for the particular integral for which a
cubature formula is wanted.

If the lower bound (8.1) underestimates the real minimal number of points
by more than one, then the method is useless. At the moment it looks as if
this is the case for d > 15 for the regions Ca, Sy E2 and Ej. The known
exceptions are C3° and C;%°

9.3. The S-method

The S-method was suggested by Cools and Haegemans (1987b) in an at-
tempt to find a method that is less dependent on the lower bound (8.1)
than the T-method. If the T-method is used to construct symmetric cub-
ature formulae for a two-dimensional symmetric integral, then ~;; = 0 if
i+ 7 is odd, in the polynomials R; (9.1). The polynomials R; can be divided
into two sets: A := {R; : i is even} and B := {R; : 7 is odd}. Instead of
demanding that (AU B) C 2, as in the T-method, we demand that A C «
or B C 2. We assign C := A and ¢ := 0 if we want to investigate the case
A C A We assign C := B and q := 1 if we want to investigate the case
B C A. The S-method is based on the following observations.

o Let S; ;== y°R;—2*R;,2,i=¢q,q+2,...,k—1. Then S; is a polynomial
of degree k + 1 and S; must be orthogonal to all polynomials of degree
k—2.

e Because S; has degree k + 1, S; € span(C).

Both conditions lead to necessary conditions for v;;: linear and quadratic
equations in the +;;s. In Cools and Haegemans (1988b), necessary and suf-
ficient conditions are given for this method, with proofs along the lines of
the proof of Theorem 9.1.

The S-method has been used to construct cubature formulae of degree 13
with 36, 35 and 34 points for Cs, Ss, E2 , and of degree 17 with 57 points
for C.
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9.4. FEvaluation

Orthogonal polynomials and ideal theory are powerful tools for theoretical
investigations of cubature formulae. The most complex concepts of ideal
theory have only been used to develop construction methods and to prove
theorems about cubature formulae. The reader has probably noticed that
we do not need the most sophisticated part of ideal theory to construct
formulae: operations on vector spaces of polynomials suffice. This is one of
the beautiful aspects of ideal theory. The construction methods described
require the solution of systems of linear and quadratic equations. These
systems are in general smaller than the systems that determine the formulae.
One problem for these methods is that they stand or fall with the quality of
the lower bounds given in Sections 7 and 8.

10. Constructing cubature formulae using invariant theory
10.1. A bird’s-eye view

In this section we will describe how one tries to construct cubature formulae
by solving the associated system of nonlinear equations (4.4). Sobolev’s
theorem plays a very important role: it is essential to limit the size of
the nonlinear system by imposing structure on the cubature formulae. It
suggests that we look for invariant cubature formulae, that is, solutions of
the equations

Qlgil = Il¢s], i=1,...,dimP3(G), (10.1)

where the ¢; form a basis for the space of G-invariant polynomials P}(G).

The idea of demanding that a cubature formula has the same symmetries
as the given integral is as old as the construction of cubature formulae itself.
Indeed, when Maxwell (1877) constructed cubature formulae for the square
and the cube, he considered only cubature formulae that are invariant with
respect to the groups of symmetries of these regions, that is, Gpg.

There is no reason why a cubature formula should have the same structure
as the integral. (What should a formula for a circle look like?) Cubature
formulae that are invariant with respect to a subgroup of the symmetry
group of the integral were already obtained by Radon (1948). His formula
for Cy is symmetric, that is, Gs-invariant, and his formula for Sy has the
origin and the vertices of a regular hexagon as points, that is, H8-invariant.

Russian researchers, aware of Sobolev’s result, applied the tools of in-
variant theory to construct cubature formulae invariant with respect to the
symmetry groups of regular polytopes An, B, and I3 and the extension
group A%. Notable results are those of Lebedev (1976) for U, (see also
Lebedev and Skorokhodov (1992) and Lebedev (1995)) and Konjaev (1977)
for Ss, E§2 and Ej.
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Table 6. Different types of Hy-orbit

type | generator | number of | number of points { unknowns
unknowns in an orbit
0 (0,0) 1 1 weight
1 (a,0) 2 4 a, weight
2 (a,a) 2 4 a, weight
3 (a,b) 3 8 a, b, weight

Western researchers also considered subgroups without using the general
theory. They realized that imposing too much structure on a formula prohib-
its attaining the minimal number of points. For instance, a fully symmetric
formula for C; of degree 9 requires 20 points, a symmetric formula 18, but a
rotational invariant (R4) cubature formula requires 17, and this is minimal.
Humans seem to have a preference for certain symmetries. Symmetry with
respect to the axes (Gs) is studied regularly but symmetry with respect
to the diagonals has been used only recently. The symmetry groups are
nevertheless isomorphic. Rotational symmetries turned up unexpectedly in
Moéller (1976) and were later used to construct some other minimal formulae
(Cools and Haegemans 1988a).

We will now present the consistency conditions approach to construct-
ing fully symmetric cubature formulae. For simplicity, we again restrict
ourselves to two dimensions.

10.2. Consistency conditions and fully symmetric regions

In this section, fully symmetric cubature formulae for two-dimensional in-
tegrals will be considered. The symmetry group is the dihedral group
H§ = By = Gpg. In Example 5.1 it was shown that not all orbits have
the same number of points. Each orbit in an invariant cubature formula
introduces a number of unknowns in the nonlinear equations (5.2) and gives
a number of points in the cubature formula (5.1). The role of the different
types of orbit is described in Table 6.

Let K be the number of orbits of type ¢ in an invariant cubature formula.
One does not expect a solution of a system of nonlinear equations if there
are more equations than unknowns. The previous sentence is the foundation
upon which all work in this area is based. It sounds very reasonable but it
also incorporates the weakness of this approach.

Rabinowitz and Richter (1969) introduced the notion of consistency con-
ditions. A consistency condition is an inequality for the K; that must be
satisfied in order to obtain a system of nonlinear equations where the num-
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ber of unknowns is greater than or equal to the number of equations in each
subsystem. Cubature formulae that do not satisfy the consistency conditions
are called ‘fortuitous’ and are thought to be rare.

We encountered basic invariant polynomials for H3 in Example 5.3:

oo:=2>+y*> and o4:=z* —62%y% + 4.

For this particular group it is more common to use ¢; := z? + 32 and
#2 := z2y? as basic invariant polynomials.

Demanding that the number of unknowns exceeds the number of equations
gives a first consistency condition:

Ko + 2K + 2K, + 3K3 > dim P3(GFs). (10.2)

For d = 2k + 1, dim P3(Grs) = 1+ k + | ].

A cubature formula that is exact for ¢2 cannot use orbits of types 0 and
1 only, because such orbits have a zero contribution in a Gpgg-invariant
cubature formula. Thus, to integrate the polynomials

Go(di ) foralli,j:0<2i+4j<d-—4,

orbits of types 2 and 3 are needed. So we obtain the second consistency
condition:

2K5 + 3K3 > dim P3_,(GFs). (10.3)

A cubature formula that is exact for (z — y)?(z +y)? = ¢? — 4¢2 cannot use
orbits of types 0 and 2 only, for the same reasons as in the previous case.
Analogously, the third consistency condition is obtained:

2K} + 3K3 > dim P%_,(Grs). (10.4)

A cubature formula that is exact for z2y?(z —y)%(z +y)? = ¢?¢2 — 4¢3 must
use orbits of type 3 because all other orbits have a zero contribution. Thus,
to integrate the polynomials

(P3¢ — 492)(¢h)) foralld,j:0<2i+4j<d—8,
orbits of type 3 are needed. From this follows the fourth consistency condi-
tion:
3K3 > dimP2_4(GFrs). (10.5)

The final consistency condition is that there can be only one orbit of type 0:
Ko <1. (10.6)

The above consistency conditions were first derived by Mantel and Rabinow-
itz (1977).

If the structure of a cubature formula with N = Ky + 4K, + 4K + 8K3
points satisfies the consistency conditions (10.2), (10.3), (10.4), (10.5) and



46 R. CooLs

(10.6), the system of nonlinear equations (10.1), as well as each subsystem,
has a number of unknowns that exceeds the number of equations and that
looks promising to those interested in a solution of such a system. However,
appearances can be deceptive.

The construction of a cubature formula with the lowest possible number
of points requires two steps.

(1) Solve the integer programming problem:
minimize N(K;:i=0,1,...),
where the integers K; satisfy the consistency conditions.

(2) Solve the system of polynomial equations (10.1). If no solution of the
polynomial equations is found, then another (non-optimal) solution of
the consistency conditions must be tried.

Example 10.1 For a fully symmetric formula of degree 7, the consistency
conditions become

Ky+ 2Ky +2Ks +3K3 > 6,
2K, +3K3 > 2,

2K1 +3K3 > 2,

3Ks > 0,

Ky < 1.

Optimal solutions are [Ky, K1, K2, K3] = [0,1,2,0], and [0,2,1,0]. (Optimal
solutions are not necessarily unique!) This second structure corresponds to
a cubature formula of the form

Qlf] = wi(f(x1,0) + f(—21,0) + f(0,z1) + f(0, —z1))
+w2(f(-’1:270) + f(—l'g,O) + f(07'r2) + f(07 _I2))
+w3(f(x3, x3) + f(—z3,x3) + f(x3, —73) + f(—23, —73)).

The system of nonlinear equations (5.2) for this case is

{ dwspa(rs, T3) = 4wz = I[¢2],
dwsy(z3, T3) P2 (w3, ¥3) = Bwsz§ = I[¢162)]

4wq + 4dwo = I[O] — 4ws,
dw1¢1(21,0) + dwag1(22,0) = I[¢1] — dwsi(z3, T3),
4w ¢3(z1,0) + dwadi (x2,0) = I[¢F] — 4wsg? (x3, 23),
4w1¢3 (1, 0) + dwadp3(22,0) = I[¢3] — dwsd3(z3, x3).
From the first two equations one determines w3 and x3. Then w;, x1, ws,

and xo follow from the remaining four equations. Both systems have the
familiar form of systems that determine a Gauss quadrature problem.
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10.3. How to exploit symmetries

Invariant theory is very useful for constructing a system of nonlinear equa-
tions that determines a cubature formula with a particular structure. One
advantage of imposing a structure is that the number of nonlinear equa-
tions is reduced. For instance, a cubature formula of degree 7 for a two-
dimensional region is a solution of a system of dim P2 = 36 equations. A
fully symmetric formula of the same degree is determined by 6 equations.

A second advantage is that one can often find a basis for the invariant
polynomials such that the equations are easy to solve. Typically, the system
of nonlinear equations is split into several smaller subsystems which can be
solved sequentially.

A third advantage is that, if the basis is chosen carefully, then each of
these subsystems of nonlinear equations can be solved easily, because they
have the same form as the systems that determine a quadrature formula.

The success of this approach depends on the selection of a proper basis
for the invariant polynomials, and that is definitely more of an art than a
science. This is clearly illustrated in Example 10.1. Other nice examples are
given by Cools and Haegemans (1987a) and Beckers and Haegemans (1991).

10.4. Some critical notes

Consistency conditions can be derived for every structure and dimension.
They can help to set up a system of nonlinear equations where in each
subsystem the number of unknowns is larger than or equal to the number
of equations. See, for example, Lyness and Jespersen (1975), Mantel and
Rabinowitz (1977), Keast and Lyness (1979), Cools (1992), and Maeztu and
Sainz de la Maza (1995).

In general, the system of nonlinear equations is still too large to be solved
completely with currently available tools. One usually has to use an iterative
zero finder and must provide very good starting values.

It must be emphasized that consistency conditions are neither sufficient
nor necessary conditions. Even if a system of equations has more unknowns
than equations, it might not have a real solution. Furthermore, fortuitous
cubature formulae are known, for instance the minimal formulae for C9-3
and C; 95

The success of this approach depends on the quality of the lower bound
for the number of points provided by the integer programming problem. For
higher degrees and dimensions, many solutions of the consistency conditions
exist for which no solutions of the nenlinear equations are known.

Most researchers have studied consistency conditions without worrying
about the associated cubature formula. It is often easier to derive these
conditions and, at the same time, obtain a system with a special structure
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that makes it easier to solve it, using the tools from invariant theory. See,
for example, Beckers and Haegemans (1991).

Although the foundations of consistency conditions are built on quicksand,
it must be said that most known cubature formulae of algebraic degree are
obtained this way. In fact, for higher dimensions and higher degrees, only
this approach has so far delivered cubature formulae.

11. A never-ending story

Let those patient readers who have borne with me thus far now join with
me in looking back. We started from a solid, general theoretical foundation.
Almost immediately we restricted our attention to the most common vector
spaces, hence limiting consideration to cubature formulae of algebraic and
trigonometric degree. We paid attention to lower bounds for the number of
points and saw that they can easily be attained in the overall algebraic or
trigonometric degree case. Following that, we searched for better bounds
that, at least in the two-dimensional case, are attained for the trigonometric
degree case. The rest of our time we spent on the most difficult and inter-
esting algebraic degree case and ended with two approaches to constructing
such formulae.

From the above, it is clear that solving systems of polynomial equations
is very near to our heart. We therefore welcome the survey of Li (1997) in
this volume.

Our list of references may seem long, yet it is incomplete. And there is
much more to say: see also Engels (1980) and Davis and Rabinowitz (1984),
and, if you can wait, Davis, Rabinowitz and Cools (199x). Let me whet your
appetite.

A cubature formula is meant to be used to approximate integrals. Users
want to have an indication of the accuracy of the approximation. A classical
way to obtain an error estimate is to compare several approximations of
different degrees of precision. Sequences of embedded cubature formulae
help to reduce the burden. Indeed, these have already been investigated.
As Cools (1992) incorporates a survey of some of the obtained results, 1
resist the temptation to elaborate on this subject.
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